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Introduction
TFTR

•

Alpha-driven toroidal Alfven Eigenmodes 
(TAEs)

Alpha-loss induced by kinetic ballooning 
modes (KBMs)

Alpha particles can drive and/or be expelled 
by MHD in a D-T reactor.

In ITER:
   > 5% alpha-loss may damage first wall.
   large alpha-loss will reduce ignition margin.

Two important observations in recent TFTR 
D-T experiments:

•

•
(1)

(2)



Alpha-driven TAEs in TFTR
TFTR

Alpha-driven TAE not observed in previous 
TFTR D-T experiments.

  Fusion power < 10.7 MW, βα < 0.3 %.

                (expect βα ~0.5-1% in ITER)

•

     Reduce beam and thermal ion Damping

(look in post NBI phase)

 Low central magnetic shear [G. Fu et al]

    High central q [D. Spong]

Theory predicts TAE can be more unstable for:•



TFTR

α-TAE Observed in TFTR

[R. Nazikian et al, '96 IAEA, submitted to PRL]
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TFTR

Mode Frequency Consistent with 
TAE Frequency
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•
• High and low q(0) included
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α-TAE Located in Plasma Core 

n=3 TAE observed on Core Reflectometer 
Channel 

r/a≈0.42

r/a≈0.57
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location :

 0.25<r/a<0.45
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High q(0) has Lower Threshold βα
TFTR

•Threshold βα is a factor of 2 lower in high 
q0 plasmas.

0

0.2

0.4

0.6

0 2 4 6 8

βα(0)

Bθ 
[mG]

~

×10−4

TAE

q(0)~1.1-1.2q(0)~1.9-2.4

noise



Importance of High Central q
TFTR

•

140 ms 
post-beam
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q0 is not the only parameter for α-TAE.

•

•



q0=2.2
qa=7.4

Mode Frequency Lies Inside Calculated Gap 
in n=3 Alfvén Continuum

TFTR

Stability analysis identifies dominant n=3 mode.
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NOVA-K code: Fu



TFTR

•Low shear and high q(0) are destabilizing.

Stability is sensitive to small change in q(0).

[For more discussion, refer poster 1S29 by Fu]

α−TAE Calculated Unstable in 
High q(0) plasma
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α-TAE  Peaks on High-Field Side
TFTR

Normal ballooning Structure for ICRF-TAE 
and KBM
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No Alpha Loss due to α-TAE
TFTR

Both fast-ion loss scaling and particle 
simulation show:

Present α-TAE too weak to cause 
measurable alpha loss.

Significant alpha-loss enhancement observed 
in kinetic-ballooning-mode (KBM) case.

•

•

Alpha Loss due to KBM Observed



Alpha Loss Correlated with KBM
TFTR

• A factor of 2 loss increase due to n≥6 KBM.
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•
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The Ballooning Modes Locate 
around Maximum ∇P

TFTR

α 
(=-Rq2dβ/dr)
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Ballooning feature also observed from 
Mirnov coils.
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Results of KBM Stability Analysis 
TFTR

Mode classification
   Not TAEs. ( fTAE ~ 300 kHz)
   Not BAEs (beam-driven Alfven 
    eigenmodes):

ω ~ ω*pi/ 2 --- KBM scaling
   Different from idea ballooning disruption 
   precursor
==> Kinetic ballooning modes

Kinetic FULL code calculation
 --- G. Rewoldt and W. Tang

   Driven by background pressure gradient.
   Effects from beam-ion and alpha are small.
   Mode location agrees with experiment.
   Maximum linear growth rate has n=14.
     (nonlinear effects may down-shift  n.)

Two-fluid calculation --- L. Zakharov
   Ballooning unstable.
   High n (>10) modes suppressed by ω*i 
   effects.

•

•

•



Simulation of Wave-Particle Interaction
TFTR

ORBIT code simulation --- R. White

•Basic feature:
      passing alpha + KBMs →                                 → trapped → escape
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                  --- consistent with experiment.
Global modes will be more dangerous.

•
•



Conclusions
TFTR

• Observation of alpha-driven TAE opened a 
new chapter in fusion plasma physics.

Initial analysis showed good agreement 
between theory and experiment 
(frequency, resonance, mode structure, 
stability, ...).

KBM in high-beta D-T plasmas caused 
substantial alpha loss (a factor of 2 
enhancement).

Particle simulation quantitatively 
demonstrated the alpha loss mechanism.

•

•

•

Alpha-driven TAE

KBM-induced alpha loss















[R. Nazikian et al, '96 IAEA, submitted to PRL]




